A Lie product type formula in Euclidean Jordan algebras

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Recovery on Euclidean Jordan Algebras

We consider the sparse recovery problem on Euclidean Jordan algebra (SREJA), which includes sparse signal recovery and low-rank symmetric matrix recovery as special cases. We introduce the restricted isometry property, null space property (NSP), and s-goodness for linear transformations in s-sparse element recovery on Euclidean Jordan algebra (SREJA), all of which provide sufficient conditions ...

متن کامل

Jordan Gradings on Exceptional Simple Lie Algebras

Models of all the gradings on the exceptional simple Lie algebras induced by Jordan subgroups of their groups of automorphisms are provided.

متن کامل

Cohomology of Jordan triples and Lie algebras

We develop a cohomology theory for Jordan triples, including the infinite dimensional ones, by means of the cohomology of TKK Lie algebras. This enables us to apply Lie cohomological results to the setting of Jordan triples.

متن کامل

Convolution over Lie and Jordan algebras

Given a ternary relation C on a set U and an algebra A, we present a construction of a convolution algebra A(U,C) of U = (U,C) over A. This generalises bothmatrix algebras and algebras obtained from convolution of monoids. To any class of algebras corresponds a class of convolution structures. Our study cases are the classes of commutative, associative, Lie, and Jordan algebras. In each of thes...

متن کامل

A Quantum Stochastic Lie-trotter Product Formula

A Trotter product formula is established for unitary quantum stochastic processes governed by quantum stochastic differential equations with constant bounded coefficients.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Special Matrices

سال: 2016

ISSN: 2300-7451

DOI: 10.1515/spma-2016-0025